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APPENDIX A

INDEPENDENCE, RANDOMIZATION, AND OUTLIERS

1. STATISTICAL INDEPENDENCE

1.1 Dunnett's Procedure and the t test with Bonferroni's adjustment are parametric procedures based on the
assumptions that (1) the observations within treatments are independent and normally distributed, and (2) that the
variance of the observations is homogeneous across all toxicant concentrations and the control. Of the three
possible departures from the assumptions, non-normality, heterogeneity of variance, and lack of independence,
those caused by lack of independence are the most difficult to resolve (see Scheffe, 1959). For toxicity data,
statistical independence means that given knowledge of the true mean for a given concentration or control,
knowledge of the error in any one actual observation would provide no information about the error in any other
observation. Lack of independence is difficult to assess and difficult to test for statistically. It may also have
serious effects on the true alpha or beta level. Therefore, it is of utmost importance to be aware of the need for
statistical independence between observations and to be constantly vigilant in avoiding any patterned experimental
procedure that might compromise independence. One of the best ways to help insure independence is to follow
proper randomization procedures throughout the test.

2. RANDOMIZATION

2.1 Randomization of the distribution of test organisms among test chambers, and the arrangement of treatments
and replicate chambers is an important part of conducting a valid test. The purpose of randomization is to avoid
situations where test organisms are placed serially into test chambers, or where all replicates for a test concentration
are located adjacent to one another, which could introduce bias into the test results.

2.2 An example of randomization of the distribution of test organisms among test chambers, and an example of
randomization of arrangement of treatments and replicate chambers are described using the Sheepshead Minnow
Larval Survival and Growth test. For the purpose of the example, the test design is as follows: Five effluent
concentrations are tested in addition to the control. The effluent concentrations are as follows: 6.25%, 12.5%,
25.0%, 50.0%, and 100.0%. There are four replicate chambers per treatment. Each replicate chamber contains ten
fish.

2.3 RANDOMIZATION OF FISH TO REPLICATE CHAMBERS EXAMPLE
2.3.1 Consider first the random assignment of the fish to the replicate chambers. The first step is to label each of
the replicate chambers with the control or effluent concentration and the replicate number. The next step is to

assign each replicate chamber four double-digit numbers. An example of this assignment is provided in Table A.1.
Note that the double digits 00 and 97 through 99 were not used.
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TABLE A.1. RANDOM ASSIGNMENT OF FISH TO REPLICATE CHAMBERS
EXAMPLE ASSIGNED NUMBERS FOR EACH REPLICATE CHAMBER

Assigned Numbers Replicate Chamber

01, 25, 49, 73 Control, replicate chamber 1
02, 26, 50, 74 Control, replicate chamber 2
03, 27, 51, 75 Control, replicate chamber 3
04, 28, 52, 76 Control, replicate chamber 4
05, 29, 53, 77 6.25% effluent, replicate chamber 1
06, 30, 54, 78 6.25% effluent, replicate chamber 2
07, 31, 55, 79 6.25% effluent, replicate chamber 3
08, 32, 56, 80 6.25% effluent, replicate chamber 4
09, 33, 57, 81 12.5% effluent, replicate chamber 1
10, 34, 58, 82 12.5% effluent, replicate chamber 2
11, 35, 59, 83 12.5% effluent, replicate chamber 3
12, 36, 60, 84 12.5% effluent, replicate chamber 4
13, 37, 61, 85 25.0% effluent, replicate chamber 1
14, 38, 62, 86 25.0% effluent, replicate chamber 2
15, 39, 63, 87 25.0% effluent, replicate chamber 3
16, 40, 64, 88 25.0% effluent, replicate chamber 4
17, 41, 65, 89 50.0% effluent, replicate chamber 1
18, 42, 66, 90 50.0% effluent, replicate chamber 2
19, 43, 67, 91 50.0% effluent, replicate chamber 3
20, 44, 68, 92 50.0% effluent, replicate chamber 4
21, 45, 69, 93 100.0% effluent, replicate chamber 1
22, 46, 70, 94 100.0% effluent, replicate chamber 2
23, 47, 71, 95 100.0% effluent, replicate chamber 3
24, 48, 72, 96 100.0% effluent, replicate chamber 4

2.3.2 The random numbers used to carry out the random assignment of fish to replicate chambers are provided in
Table A.2. The third step is to choose a starting position in Table A.2, and read the first double digit number. The
first number read identifies the replicate chamber for the first fish taken from the tank. For the example, the first
entry in row 2 was chosen as the starting position. The first number in this row is 37. According to Table A.1, this
number corresponds to replicate chamber 1 of the 25.0% effluent concentration. Thus, the first fish taken from the
tank is to be placed in replicate chamber 1 of the 25.0% effluent concentration.
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1009 732533
3754204805
0842 26 89 53
99 01 902529
12 80 79 99 70
66 06 5747 17
310601 08 05
8526977602
6357332135
7379 64 5753
9852017767
11 80 50 54 31
83452996 34
88 68 54 02 00
99 59 46 73 48
6548117674
8012 43 56 35
74350998 17
69 91 62 68 03
09 89 320505
9149914523
8033 69 45 98
4410481949
1255073742
63 60 64 93 29
61 1969 04 46
1547 44 52 66
9455728573
4248116213
2352378317
04 49 35 24 94
00 54 99 76 54
3596315307
59 80 80 83 91
46 05 88 52 36
32179005 97
69 23 46 14 06
19 56 54 14 30
4515514938
94 86 43 19 94
98 08 62 48 26
3318516232
809510 04 06
79 752491 40
18 63 332537
74 02 94 39 02
5417845611
11 66 44 98 83
48324779 28
69 07 49 41 38

TABLE A.2. TABLE OF RANDOM NUMBERS (Dixon and Massey, 1983)

76 52 01 35 86
64 89 47 42 96
19 64 50 93 03
0937670715
801573 61 47
340727 68 50
4557 1824 06
0205165692
05325470 48
0352964778
14 90 56 86 07
3980827732
06 28 89 80 83
86 50 75 84 01
87517649 69
17 46 85 09 50
177270 80 15
7740277214
66 252291 48
1422 56 85 14
68 479276 86
26 94 03 68 58
85157479 54
11100020 40
16 50 53 44 84
2645747774
95270799 53
6789 7543 87
97 34 40 87 21
7320 88 98 37
7524 63 38 24
64 0518 81 59
26 89 8093 45
45427268 42
013909 22 86
8737925241
2011745204
0175875379
1947 60 72 46
3616 81 08 51
452402 84 04
41941509 49
96 382707 74
7196 12 82 96
9814 50 65 71
7755732270
8099 337143
5207 98 48 27
3124964710
8763791976

3467354376
24 80 5240 37
23209025 60
3831131165
64 03 23 66 53
3669736170
3530342614
68 66 57 48 18
90 55357548
3580 8342 82
22109405 58
50 72 56 82 48
1374 67 00 78
3676 66 79 51
91 82 60 89 28
5804 77 69 74
4531822374
43236002 10
3693687203
464275 67 88
46 16 28 35 54
7029 73 41 35
3297926575
12 .86 07 46 97
4021 9525 63
5192433729
5936 78 38 48
54622444 31
16 86 84 87 67
6893591416
4586251025
96 11 96 38 96
3335135462
83 60 94 97 00
7728 144077
0556 70 70 07
1595 66 00 00
4041921585
43 6679 4543
3488881553
44 99 90 88 96
89 43 54 85 81
2015123387
69 86 10 2591
3101024674
9779017119
0533512969
5938171539
0229536870
35584044 01

80959091 17
2063 61 04 02
15953347 64
88 676743 97
989511 68 77
65 81 33 98 85
86 79 90 74 39
73 05385247
2846 82 8709
6093 52 03 44
60 97 09 34 33
2940524201
1847 54 06 10
903647 6493
93 78 56 13 68
73039571 86
2111578253
4552164237
76 62113990
96 29 77 88 22
947508 99 23
5314033340
57 60 04 08 81
96 64 48 94 39
43651770 82
6539459593
8239610118
911904 25 92
0307112059
26252296 63
6196279335
5469 28 23 91
7797 45 00 24
1302 12 4892
9391 08 36 47
86743171 57
1874 3924 23
66 67 43 68 06
5904 79 00 33
0154 03 54 56
3909473407
8869 54 19 94
2501 625298
74 8522 05 39
05 45 56 14 27
5252758021
5612719255
0997 333440
3230757546
1051821615
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3929274945
00 8229 16 65
350803 36 06
04 43 62 76 59
122717 68 33
1119929170
23403097 32
1862388579
83491256 24
3527388435
505007 39 98
52775678 51
6871177817
29609110 62
2347834113
4021 816544
14 38 5537 63
96 28 60 26 55
94 40 05 64 18
5438214598
3708 92 00 48
42 0508 23 41
2222206413
28707258 15
0720731790
42 5826 0527
3321159466
9292745973
2570 14 66 70
0552282562
6533712472
2328729529
9010339333
78 56 52 01 06
70 61 74 29 41
853941 18 38
97 11 89 63 38
84 96 28 52 07
20 8266 95 41
0501451176
354413 18 80
3754873043
9462461171
0038759579
7793 89 19 36
8081451748
36 04 09 03 24
8846123356
1502 00 99 94
01 84 87 69 38



2.3.3 The next step is to read the double digit number to the right of the first one. The second number identifies
the replicate chamber for the second fish taken from the tank. Continuing the example, the second number read in
row 2 of Table A.2 is 54. According to Table A.1, this number corresponds to replicate chamber 2 of the 6.25%
effluent concentration. Thus, the second fish taken from the tank is to be placed in replicate chamber 2 of the
6.25% effluent concentration.

2.3.4 Continue in this fashion until all the fish have been randomly assigned to a replicate chamber. In order to fill
each replicate chamber with ten fish, the assigned numbers will be used more than once. If a number is read from
the table that was not assigned to a replicate chamber, then ignore it and continue to the next number. If a replicate
chamber becomes filled and a number is read from the table that corresponds to it, then ignore that value and
continue to the next number. The first ten random assignments of fish to replicate chambers for the example are
summarized in Table A.3.

TABLE A.3. EXAMPLE OF RANDOM ASSIGNMENT OF FIRST TEN FISH TO

REPLICATE CHAMBERS

Fish Assignment

First fish taken from tank 25.0% effluent, replicate chamber 1
Second fish taken from tank 6.25% effluent, replicate chamber 2
Third fish taken from tank 50.0% effluent, replicate chamber 4
Fourth fish taken from tank 100.0% effluent, replicate chamber 4
Fifth fish taken from tank 6.25% effluent, replicate chamber 1
Sixth fish taken from tank 25.0% effluent, replicate chamber 4
Seventh fish taken from tank 50.0% effluent, replicate chamber 1
Eighth fish taken from tank 100.0% effluent, replicate chamber 3
Ninth fish taken from tank 50.0% effluent, replicate chamber 2
Tenth fish taken from tank 100.0% effluent,  replicate chamber 4

2.3.5 Four double-digit numbers were assigned to each replicate chamber (instead of one, two, or three double-
digit numbers) in order to make efficient use of the random number table (Table A.2). To illustrate, consider the
assignment of only one double-digit number to each replicate chamber: the first column of assigned numbers in
Table A.1. Whenever the numbers 00 and 25 through 99 are read from Table A.2, they will be disregarded and the
next number will be read.

2.4 RANDOMIZATION OF REPLICATE CHAMBERS TO POSITIONS EXAMPLE
2.4.1 Next consider the random assignment of the 24 replicate chambers to positions within the water bath (or

equivalent). Assume that the replicate chambers are to be positioned in a four row by six column rectangular array.
The first step is to label the positions in the water bath. Table A.4 provides an example layout.

387



TABLE A 4. RANDOM ASSIGNMENT OF REPLICATE CHAMBERS TO POSITIONS: EXAMPLE
LABELING THE POSITIONS WITHIN THE WATER BATH

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24

2.4.2 The second step is to assign each of the 24 positions four double-digit numbers. An example of this
assignment is provided in Table A.5. Note that the double digits 00 and 97 through 99 were not used.

TABLE AS. RANDOM ASSIGNMENT OF REPLICATE CHAMBERS TO POSITIONS: EXAMPLE
ASSIGNED NUMBERS FOR EACH POSITION

Assigned Numbers Position
01, 25, 49,73 1
02, 26, 50,74 2
03, 27, 51,75 3
04, 28, 52,76 4
05, 29, 53,77 5
06, 30, 54,78 6
07, 31, 55,79 7
08, 32, 56,80 8
09, 33, 57,81 9
10, 34, 58,82 10
11, 35, 59,83 11
12, 36, 60, 84 12
13, 37, 61,85 13
14, 38, 62,86 14
15, 39, 63,87 15
16, 40, 64,88 16
17, 41, 65,89 17
18, 42, 66,90 18
19, 43, 67,91 19
20, 44, 68,92 20
21, 45, 69,93 21
22, 46, 70,94 22
23, 47, 71,95 23
24, 48, 72,96 24
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2.4.3 The random numbers used to carry out the random assignment of replicate chambers to positions are
provided in Table A.2. The third step is to choose a starting position in Table A.2, and read the first double-digit
number. The first number read identifies the position for the first replicate chamber of the control. For the
example, the first entry in row 10 of Table A.2 was chosen as the starting position. The first number in this row was
73. According to Table A.5, this number corresponds to position 1. Thus, the first replicate chamber for the control
will be placed in position 1.

2.4.4 The next step is to read the double-digit number to the right of the first one. The second number identifies
the position for the second replicate chamber of the control. Continuing the example, the second number read in
row 10 of Table A.2 is 79. According to Table A.5, this number corresponds to position 7. Thus, the second
replicate chamber for the control will be placed in position 7.

2.4.5 Continue in this fashion until all the replicate chambers have been assigned to a position. The first four
numbers read will identify the positions for the control replicate chambers, the second four numbers read will
identify the positions for the lowest effluent concentration replicate chambers, and so on. If a number is read from
the table that was not assigned to a position, then ignore that value and continue to the next number. If a number is
repeated in Table A.2, then ignore the repeats and continue to the next number. The complete randomization of
replicate chambers to positions for the example is displayed in Table A.6.

TABLE A.6. RANDOM ASSIGNMENT OF REPLICATE CHAMBERS TO POSITIONS:
EXAMPLE ASSIGNMENT OF ALL 24 POSITIONS

Control 100.0% 6.25% 6.25% 6.25% 12.5%

Control 12.5% Control 25.0% 12.5% 25.0%

100.0% 50.0% 100.0% Control 100.0% 25.0%
50.0% 50.0% 25.0% 50.0% 12.5% 6.25%

2.4.6 Four double-digit numbers were assigned to each position (instead of one, two, or three) in order to make
efficient use of the random number table (Table A.2). To illustrate, consider the assignment of only one double-
digit number to each position: the first column of assigned numbers in Table A.5. Whenever the numbers 00 and
25 through 99 are read from Table A.2, they will be disregarded and the next number will be read.

3. OUTLIERS

3.1 An outlier is an inconsistent or questionable data point that appears unrepresentative of the general trend
exhibited by the majority of the data. Outliers may be detected by tabulation of the data, plotting, and by an
analysis of the residuals. An explanation should be sought for any questionable data points. Without an
explanation, data points should be discarded only with extreme caution. If there is no explanation, the analysis
should be performed both with and without the outlier, and the results of both analyses should be reported.

3.2 Gentleman-Wilk's A statistic gives a test for the condition that the extreme observation may be considered an
outlier. For a discussion of this, and other techniques for evaluating outliers, see Draper and John (1981).
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APPENDIX B

VALIDATING NORMALITY AND HOMOGENEITY OF VARIANCE ASSUMPTIONS

1. INTRODUCTION

1.1 Dunnett's Procedure and the t test with Bonferroni's adjustment are parametric procedures based on the
assumptions that the observations within treatments are independent and normally distributed, and that the variance
of the observations is homogeneous across all toxicant concentrations and the control. These assumptions should be
checked prior to using these tests, to determine if they have been met. Tests for validating the assumptions are
provided in the following discussion. If the tests fail (if the data do not meet the assumptions), a nonparametric
procedure such as Steel's Many-one Rank Test may be more appropriate. However, the decision on whether to use
parametric or nonparametric tests may be a judgement call, and a statistician should be consulted in selecting the
analysis.

2. TEST FOR NORMAL DISTRIBUTION OF DATA
2.1 SHAPIRO-WILK'S TEST

2.1.1 One formal test for normality is the Shapiro-Wilk's Test (Conover, 1980). The test statistic is obtained by
dividing the square of an appropriate linear combination of the sample order statistics by the usual symmetric
estimate of variance. The calculated W must be greater than zero and less than or equal to one. This test is
recommended for a sample size of 50 or less. If the sample size is greater than 50, the Kolmogorov "D" statistic
(Stephens, 1974) is recommended. An example of the Shapiro-Wilk's test is provided below.

2.2 The example uses growth data from the Sheepshead Minnow Larval Survival and Growth Test. The same data
are used in the discussion of the homogeneity of variance determination in Paragraph 3 and Dunnett's Procedure in
Appendix C. The data, the mean and variance of the observations at each concentration, including the control, are
listed in Table B.1.

TABLE B.1. SHEEPSHEAD MINNOW, CYPRINODON VARIEGATUS, LARVAL GROWTH
DATA (WEIGHT IN MG) FOR THE SHAPIRO-WILK'S TEST

Effluent Concentration (%)

Replicate Control 6.25 12.5 25.0 50.0
1 1.017 1.157 0.998 0.837 0.715
2 0.745 0.914 0.793 0.935 0.907
3 0.862 0.992 1.021 0.839 1.044
Mean(Y;) 0.875 1.021 0.937 0.882 0.889
S 0.019 0.015 0.016 0.0031 0.027
i 1 2 3 4 5
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2.3 The first step of the test for normality is to center the observations by subtracting the mean of all observations

within a concentration from each observation in that concentration. The centered observations are listed in Table
B.2.

TABLE B.2. EXAMPLE OF SHAPIRO-WILK'S TEST: CENTERED OBSERVATIONS

Effluent Concentration (%)

Replicate Control 6.25 12.5 25.0 50.0

1 0.142 0.136 0.061 - 0.009 -0.174
2 -0.130 -0.107 -0.144 0.053 0.018
3 -0.013 -0.029 0.084 - 0.043 0.155

2.4 Calculate the denominator, D, of the test statistic:

Where: X, = the centered observations, X is the overall mean of the centered observations, and n is the total
number of the centered observations. For this set of data, X =0, and D = 0.1589.

2.4.1 For this set of data,
n=15
X =1/50(0)=0.0
D=0.1589
2.5 Order the centered observations from smallest to largest,
XD <« XO < < X0

where X© denote the ith order statistic. The ordered observations are listed in Table B.3.
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TABLE B.3. EXAMPLE OF THE SHAPIRO-WILK'S TEST: ORDERED OBSERVATIONS

i xXO

1 -0.174
2 -0.144
3 -0.130
4 -0.107
5 -0.043
6 -0.029
7 -0.013
8 - 0.009
9 0.018
10 0.053
11 0.061
12 0.084
13 0.136
14 0.142
15 0.155

2.6 From Table B.4,for the number of observations, n, obtain the coefficients a,, a,, ..., a,, where k is n/2 if n is
even, and (n-1)/2 if n is odd. For the data in this example, n =15, k =7, and the a; values are listed in Table B.5.
The differences, X™™D - X9, are listed in Table B.5.

2.7 Compute the test statistic, W, as follows:

1. : .~
W=—[Xa (X x
D -
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TABLE B.4. COEFFICIENTS FOR THE SHAPIRO-WILK'S TEST (Conover, 1980)

:'/

Number of Observations

2 3 4 5 6 7 8 9 10
1 0.7071 0.7071 0.6872 0.6646 0.6431 0.6233 0.6052 0.5888 0.5739
2 - 0.0000 0.1667 0.2413 0.2806 0.3031 0.3164 0.3244 0.3291
3 - - - 0.0000 0.0875 0.1401 0.1743 0.1976 0.2141
4 - - - - - 0.0000 0.0561 0.0947 0.1224
5 - - - - - - - 0.0000 0.0399
\ Number of Observations
i\ 11 12 13 14 15 16 17 18 19 20
1 0.5601 0.5475 0.5359 0.5251 0.5150 0.5056 0.4968 0.4886 0.4808 0.4734
2 0.3315 0.3325 0.3325 0.3318 0.3306 0.3209 0.3273 0.3253 0.3232 0.3211
3 0.2260 0.2347 0.2412 0.2460 0.2495 0.2521 0.2540 0.2553 0.2561 0.2565
4 0.1429 0.1586 0.1707 0.1802 0.1878 0.1939 0.1988 0.2027 0.2059 0.2085
5 0.0695 0.0922 0.1099 0.1240 0.1353 0.1447 0.1524 0.1587 0.1641 0.1686
6 0.0000 0.0303 0.0539 0.0727 0.0880 0.1005 0.1109 0.1197 0.1271 0.1334
7 - - 0.0000 0.0240 0.0433 0.0593 0.0725 0.0837 0.0932 0.1013
8 - - - - 0.0000 0.0196 0.0359 0.0496 0.0612 0.0711
9 - - - - - - 0.0000 0.0163 0.0303 0.0422
10 - - - - - - - - 0.0000 0.0140
\ Number of Observations
i\" 21 22 23 24 25 26 27 28 29 30
1 0.4643 0.4590 0.4542 0.4493 0.4450 0.4407 0.4366 0.4328 0.4291 0.4254
2 0.3185 0.3156 0.3126 0.3098 0.3069 0.3043 0.3018 0.2992 0.2968 0.2944
3 0.2578 0.2571 0.2563 0.2554 0.2543 0.2533 0.2522 0.2510 0.2499 0.2487
4 0.2119 0.2131 0.2139 0.2145 0.2148 0.2151 0.2152 0.2151 0.2150 0.2148
5 0.1736 0.1764 0.1787 0.1807 0.1822 0.1836 0.1848 0.1857 0.1864 0.1870
6 0.1399 0.1443 0.1480 0.1512 0.1539 0.1563 0.1584 0.1601 0.1616 0.1630
7 0.1092 0.1150 0.1201 0.1245 0.1283 0.1316 0.1346 0.1372 0.1395 0.1415
8 0.0804 0.0878 0.0941 0.0997 0.1046 0.1089 0.1128 0.1162 0.1192 0.1219
9 0.0530 0.0618 0.0696 0.0764 0.0923 0.0876 0.0923 0.0965 0.1002 0.1036
10 0.0263 0.0368 0.0459 0.0539 0.0610 0.0672 0.0728 0.0778 0.0822 0.0862
11 0.0000 0.0122 0.0228 0.0321 0.0403 0.0476 0.0540 0.0598 0.0650 0.0697
12 - - 0.0000 0.0107 0.0200 0.0284 0.0358 0.0424 0.0483 0.0537
13 - - - - 0.0000 0.0094 0.0178 0.0253 0.0320 0.0381
14 - - - - - - 0.0000 0.0084 0.0159 0.0227
15 - - - - - - - - 0.0000 0.0076
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TABLE B.4. COEFFICIENTS FOR THE SHAPIRO-WILK'S TEST (CONTINUED)

Number of Observations
33 34 35 36 37 38 39 40

=
(98]
«
(98]
[\S)

1 0.4220 04188  0.4156  0.4127  0.4096  0.4068  0.4040  0.4015 0.3989  0.3964
2 0.2921 0.2898  0.2876  0.2854  0.2834  0.2813 02794 02774  0.2755 0.2737
3 0.2475 02462  0.2451 02439  0.2427  0.2415 0.2403 0.2391 0.2380  0.2368
4 0.2145 0.2141 02137 02132  0.2127  0.2121 02116 02110  0.2104  0.2098
5 0.1874  0.1878  0.1880  0.1882  0.1883 0.1883 0.1883 0.1881 0.1880  0.1878
6 0.1641 0.1651 0.1660  0.1667  0.1673 0.1678  0.1683 0.1686  0.1689  0.1691
7 0.1433 0.1449  0.1463 0.1475 0.1487  0.1496  0.1505 0.1513 0.1520  0.1526
8 0.1243 0.1265 0.1284  0.1301 0.1317  0.1331 0.1344  0.1356  0.1366  0.1376
9 0.1066  0.1093 0.1118  0.1140  0.1160  0.1179  0.1196  0.1211 0.1225 0.1237
10 0.0899  0.0931 0.0961 0.0988  0.1013 0.1036  0.1056  0.1075 0.1092  0.1108
11 0.0739  0.0777  0.0812  0.0844  0.0873 0.0900  0.0924  0.0947  0.0967  0.0986
12 0.0585 0.0629  0.0669  0.0706  0.0739  0.0770  0.0798  0.0824  0.0848  0.0870
13 0.0435 0.0485 0.0530  0.0572  0.0610  0.0645 0.0677  0.0706  0.0733 0.0759
14 0.0289  0.0344  0.0395 0.0441 0.0484  0.0523 0.0559  0.0592  0.0622  0.0651
15 0.0144  0.0206  0.0262  0.0314  0.0361 0.0404  0.0444  0.0481 0.0515 0.0546
16 0.0000  0.0068  0.0131 0.0187  0.0239  0.0287  0.0331 0.0372  0.0409  0.0444
17 - - 0.0000  0.0062  0.0119  0.0172  0.0220  0.0264  0.0305 0.0343
18 - - - - 0.0000  0.0057  0.0110  0.0158  0.0203 0.0244
19 - - - - - - 0.0000  0.0053 0.0101 0.0146
20 - - - - - - - - 0.0000  0.0049
\ Number of Observations

i\ 41 42 43 44 45 46 47 48 49 50

1 0.3940  0.3917  0.3894  0.3872  0.3850  0.3830  0.3808  0.3789  0.3770  0.3751
2 02719  0.2701 0.2684  0.2667  0.2651 0.2635 02620  0.2604  0.2589  0.2574
3 0.2357  0.2345 0.2334  0.2323 0.2313 02302  0.2291 0.2281 0.2271 0.2260
4 0.2091 0.2085 0.2078  0.2072  0.2065 0.2058  0.2052  0.2045 0.2038  0.2032
5 0.1876  0.1874  0.1871 0.1868  0.1865 0.1862  0.1859  0.1855 0.1851 0.1847
6 0.1693 0.1694  0.1695 0.1695 0.1695 0.1695 0.1695 0.1693 0.1692  0.1691
7 0.1531 0.1535 0.1539  0.1542  0.1545 0.1548  0.1550  0.1551 0.1553 0.1554
8 0.1384  0.1392  0.1398  0.1405 0.1410  0.1415 0.1420  0.1423 0.1427  0.1430
9 0.1249  0.1259  0.1269  0.1278  0.1286  0.1293 0.1300  0.1306  0.1312  0.1317
10 0.1123 0.1136  0.1149  0.1160  0.1170  0.1180  0.1189  0.1197  0.1205 0.1212
11 0.1004  0.1020  0.1035 0.1049  0.1062  0.1073 0.1085 0.1095 0.1105 0.1113
12 0.0891 0.0909  0.0927  0.0943 0.0959  0.0972  0.0986  0.0998  0.1010  0.1020
13 0.0782  0.0804  0.0824  0.0842  0.0860 0.0876  0.0892  0.0906  0.0919  0.0932
14 0.0677  0.0701 0.0724  0.0745 0.0765 0.0783 0.0801 0.0817  0.0832  0.0846
15 0.0575 0.0602  0.0628  0.0651 0.0673 0.0694  0.0713 0.0731 0.0748  0.0764
16 0.0476  0.0506  0.0534  0.0560  0.0584  0.0607 0.0628  0.0648  0.0667  0.0685
17 0.0379  0.0411 0.0442  0.0471 0.0497  0.0522  0.0546  0.0568  0.0588  0.0608
18 0.0283 0.0318  0.0352  0.0383 0.0412  0.0439  0.0465 0.0489  0.0511 0.0532
19 0.0188  0.0227  0.0263 0.0296  0.0328  0.0357  0.0385 0.0411 0.0436  0.0459
20 0.0094  0.0136  0.0175 0.0211 0.0245 0.0277  0.0307  0.0335 0.0361 0.0386
21 0.0000  0.0045 0.0087  0.0126  0.0163 0.0197  0.0229  0.0259  0.0288  0.0314
22 - - 0.0000  0.0042  0.0081 0.0118  0.0153 0.0185 0.0215 0.0244
23 - - - - 0.0000  0.0039  0.0076  0.0111 0.0143 0.0174
24 - - - - - - 0.0000  0.0037  0.0071 0.0104
25 - - - - - - - - 0.0000  0.0035
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TABLE B.5. EXAMPLE OF THE SHAPIRO-WILK'S TEST: TABLE OF COEFFICIENTS AND

DIFFERENCES

i a; Xt _ x0

1 0.4734 0.181 X . X0
2 0.3211 0.128 X . X®
3 0.2565 0.105 X XO
4 0.2085 0.097 X X®
5 0.1686 0.076 Xt . X®
6 0.1334 0.048 X . X®
7 0.1013 0.034 XMW . X0
8 0.0711 0.025 X . X®
9 0.0422 0.008 ) CRENEID
10 0.0140 0.005 Xt X1
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TABLE B.6. QUANTILES OF THE SHAPIRO WILK'S TEST STATISTIC (Conover, 1980)

n 0.01 0.02 0.05 0.10 0.50 0.90 0.95 0.98 0.99

3 0.753 0.756 0.767 0.789 0.959 0.998 0.999 1.000 1.000
4 0.687 0.707 0.748 0.792 0.935 0.987 0.992 0.996 0.997
5 0.686 0.715 0.762 0.806 0.927 0.979 0.986 0.991 0.993
6 0.713 0.743 0.788 0.826 0.927 0.974 0.981 0.986 0.989
7 0.730 0.760 0.803 0.838 0.928 0.972 0.979 0.985 0.988
8 0.749 0.778 0.818 0.851 0.932 0.972 0.978 0.984 0.987
9 0.764 0.791 0.829 0.859 0.935 0.972 0.978 0.984 0.986
10 0.781 0.806 0.842 0.869 0.938 0.972 0.978 0.983 0.986
11 0.792 0.817 0.850 0.876 0.940 0.973 0.979 0.984 0.986
12 0.805 0.828 0.859 0.883 0.943 0.973 0.979 0.984 0.986
13 0.814 0.837 0.866 0.889 0.945 0.974 0.979 0.984 0.986
14 0.825 0.846 0.874 0.895 0.947 0.975 0.980 0.984 0.986
15 0.835 0.855 0.881 0.901 0.950 0.975 0.980 0.984 0.987
16 0.844 0.863 0.887 0.906 0.952 0.976 0.981 0.985 0.987
17 0.851 0.869 0.892 0.910 0.954 0.977 0.981 0.985 0.987
18 0.858 0.874 0.897 0.914 0.956 0.978 0.982 0.986 0.988
19 0.863 0.879 0.901 0.917 0.957 0.978 0.982 0.986 0.988
20 0.868 0.884 0.905 0.920 0.959 0.979 0.983 0.986 0.988
21 0.873 0.888 0.908 0.923 0.960 0.980 0.983 0.987 0.989
22 0.878 0.892 0.911 0.926 0.961 0.980 0.984 0.987 0.989
23 0.881 0.895 0.914 0.928 0.962 0.981 0.984 0.987 0.989
24 0.884 0.898 0.916 0.930 0.963 0.981 0.984 0.987 0.989
25 0.888 0.901 0.918 0.931 0.964 0.981 0.985 0.988 0.989
26 0.891 0.904 0.920 0.933 0.965 0.982 0.985 0.988 0.989
27 0.894 0.906 0.923 0.935 0.965 0.982 0.985 0.988 0.990
28 0.896 0.908 0.924 0.936 0.966 0.982 0.985 0.988 0.990
29 0.898 0.910 0.926 0.937 0.966 0.982 0.985 0.988 0.990
30 0.900 0.912 0.927 0.939 0.967 0.983 0.985 0.988 0.990
31 0.902 0.914 0.929 0.940 0.967 0.983 0.986 0.988 0.990
32 0.904 0.915 0.930 0.941 0.968 0.983 0.986 0.988 0.990
33 0.906 0.917 0.931 0.942 0.968 0.983 0.986 0.989 0.990
34 0.908 0.919 0.933 0.943 0.969 0.983 0.986 0.989 0.990
35 0.910 0.920 0.934 0.944 0.969 0.984 0.986 0.989 0.990
36 0.912 0.922 0.935 0.945 0.970 0.984 0.986 0.989 0.990
37 0.914 0.924 0.936 0.946 0.970 0.984 0.987 0.989 0.990
38 0.916 0.925 0.938 0.947 0.971 0.984 0.987 0.989 0.990
39 0.917 0.927 0.939 0.948 0.971 0.984 0.987 0.989 0.991
40 0.919 0.928 0.940 0.949 0.972 0.985 0.987 0.989 0.991
41 0.920 0.929 0.941 0.950 0.972 0.985 0.987 0.989 0.991
42 0.922 0.930 0.942 0.951 0.972 0.985 0.987 0.989 0.991
43 0.923 0.932 0.943 0.951 0.973 0.985 0.987 0.990 0.991
44 0.924 0.933 0.944 0.952 0.973 0.985 0.987 0.990 0.991
45 0.926 0.934 0.945 0.953 0.973 0.985 0.988 0.990 0.991
46 0.927 0.935 0.945 0.953 0.974 0.985 0.988 0.990 0.991
47 0.928 0.936 0.946 0.954 0.974 0.985 0.988 0.990 0.991
48 0.929 0.937 0.947 0.954 0.974 0.985 0.988 0.990 0.991
49 0.929 0.937 0.947 0.955 0.974 0.985 0.988 0.990 0.991
50 0.930 0.938 0.947 0.955 0.974 0.985 0.988 0.990 0.991
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2.8 The decision rule for this test is to compare the critical value from Table B.6 to the computed W. If the
computed value is less than the critical value, conclude that the data are not normally distributed. For this example,
the critical value at a significance level of 0.01 and 15 observations (n) is 0.835. The calculated value, 0.9516, is
not less than the critical value. Therefore conclude that the data are normally distributed.

2.9 In general, if the data fail the test for normality, a transformation such as to log values may normalize the data.
After transforming the data, repeat the Shapiro Wilk's Test for normality.

3. TEST FOR HOMOGENEITY OF VARIANCE

3.1 For Dunnett's Procedure and the t test with Bonferroni's adjustment, the variances of the data obtained from
each toxicant concentration and the control are assumed to be equal. Bartlett's Test is a formal test of this
assumption. In using this test, it is assumed that the data are normally distributed.

3.2 The data used in this example are growth data from a Sheepshead Minnow Larval Survival and Growth Test,
and are the same data used in Appendices C and D. These data are listed in Table B.7, together with the calculated

variance for the control and each toxicant concentration.

3.3 The test statistic for Bartlett's Test (Snedecor and Cochran, 1980) is as follows:

P P
[(XV) InS - XV, In S]]
i-1

i=1

B =
C

Where: V, = degrees of freedom for each effluent concentration and control, (V,=n; - 1)
p = number of levels of toxicant concentration including the control
In = log,
i=1,2, ..., p where p is the number of concentrations including the control

n; = the number of replicates for concentration i.

C=14 B3] [SUV,~ (V) ]
i=1 i=1

397



TABLE B.7. SHEEPSHEAD MINNOW, CYPRINODON VARIEGATUS, LARVAL GROWTH DATA
(WEIGHT IN MG) USED FOR BARTLETT'S TEST FOR HOMOGENEITY OF

VARIANCE
Effluent Concentration (%)

Replicate Control 6.25 12.5 25.0 50.0
1 1.017 1.157 0.998 0.873 0.715
2 0.745 0914 0.793 0.935 0.907
3 0.862 0.992 1.021 0.839 1.044
Mean 0.875 1.021 0.937 0.882 0.889
S? 0.019 0.015 0.016 0.0024 0.027
i 1 2 3 4 5

3.4 Since B is approximately distributed as chi-square with p - 1 degrees of freedom when the variances are equal,
the appropriate critical value is obtained from a table of the chi-square distribution for p - 1 degrees of freedom and
a significance level of 0.01. If B is less than the critical value then the variances are assumed to be equal.

3.5 For the data in this example, V,=2,p =15, S? =0.0158, and C = 1.2. The calculated B value is:

2[5(1n 0.0158) - XIn(S})]
B- i

1.2

_2[5(- 4.1477) - (-22.1247)]
1.2

= 23103

3.6 Since B is approximately distributed as chi-square with p - 1 degrees of freedom when the variances are equal,
the appropriate critical value for the test is 13.3 for a significance level of 0.01. Since B is less than 13.3, the
conclusion is that the variances are not different.
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4. TRANSFORMATIONS OF THE DATA

4.1 When the assumptions of normality and/or homogeneity of variance are not met, transformations of the data
may remedy the problem, so that the data can be analyzed by parametric procedures, rather than nonparametric
technique such as Steel's Many-one Rank Test or Wilcoxon's Rank Sum Test. Examples of transformations include
log, square root, arc sine square root, and reciprocals. After the data have been transformed, the Shapiro-Wilk's and
Bartlett's tests should be performed on the transformed observations to determine whether the assumptions of
normality and/or homogeneity of variance are met.

4.2 ARC SINE SQUARE ROOT TRANSFORMATION (USEPA, 1993).
4.2.1 For data consisting of proportions from a binomial (response/no response; live/dead) response variable, the
variance within the ith treatment is proportional to P; (1 - P;), where P, is the expected proportion for the treatment.
This clearly violates the homogeneity of variance assumption required by parametric procedures such as Dunnett's
Procedure or the t test with Bonferroni's adjustment, since the existence of a treatment effect implies different values
of P, for different treatments, i. Also, when the observed proportions are based on small samples, or when P, is
close to zero or one, the normality assumption may be invalid. The arc sine square root (arc sine v'P)
transformation is commonly used for such data to stabilize the variance and satisfy the normality requirement.
4.2.2 Arc sine transformation consists of determining the angle (in radians) represented by a sine value. In the
case of arc sine square root transformation of mortality data, the proportion of dead (or affected) organisms is taken
as the sine value, the square root of the sine value is determined, and the angle (in radians) for the square root of the
sine value is determined. Whenever the proportion dead is 0 or 1, a special modification of the arc sine square root
transformation must be used (Bartlett, 1937). An explanation of the arc sine square root transformation and the
modification is provided below.
4.2.3 Calculate the response proportion (RP) at each effluent concentration, where:

RP = (number of surviving or unaffected organisms)/(number exposed).

Example: If 12 of 20 animals in a given treatment replicate survive:

RP =12/20
=0.60

4.2.4 Transform each RP to its arc sine square root, as follows:

4.2.4.1 For RPs greater than zero or less than one:
Angle (radians) = arc sine  /RP

Example: If RP = 0.60:

Angle = arcsine /0.60
= arc sine 0.7746

=(.8861 radians

4.2.4.2 Modification of the arc sine square root when RP = 0.
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Angle (in radians) = arc sine  /1/4 N

Where: N = Number of animals/treatment replicate

Example: If 20 animals are used:

Angle =arcsine 4/1/80

=arc sine 0.1118
=0.1120 radians

4.2.4.3 Modification of the arc sine square root when RP =1
Angle = 1.5708 radians - (radians for RP = 0)
Example: Using above value:
Angle =1.5708 - 0.1120

= 1.4588 radians
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APPENDIX C

DUNNETT'S PROCEDURE

1. MANUAL CALCULATIONS

1.1 Dunnett's Procedure (Dunnett, 1955; Dunnett, 1964) is used to compare each concentration mean with the
control mean to decide if any of the concentrations differ from the control. This test has an overall error rate of
alpha, which accounts for the multiple comparisons with the control. It is based on the assumptions that the
observations are independent and normally distributed and that the variance of the observations is homogeneous
across all concentrations and control. (See Appendix B for a discussion on validating the assumptions). Dunnett's
Procedure uses a pooled estimate of the variance, which is equal to the error value calculated in an analysis of
variance. Dunnett's Procedure can only be used when the same number of replicate test vessels have been used at
each concentration and the control. When this condition is not met, the t test with Bonferroni's adjustment is used
(see Appendix D).

1.2 The data used in this example are growth data from a Sheepshead Minnow Larval Survival and Growth Test,

and are the same data used in Appendices B and D. These data are listed in Table C.1.

TABLE C.1. SHEEPSHEAD MINNOW, CYPRINODON VARIEGATUS, LARVAL GROWTH DATA
(WEIGHT IN MG) USED FOR DUNNETT'S PROCEDURE

Effluent Replicate Test Vessel Total Mean
Conc (%)
i 1 2 3 (T) (Y

Control 1 1.017 0.745 0.862 2.624 0.875
6.25 2 1.157 0.914 0.992 3.063 1.021
12.5 3 0.998 0.793 1.021 2.812 0.937
25.0 4 0.873 0.935 0.839 2.647 0.882
50.0 5 0.715 0.907 1.044 2.666 0.889

1.3 One way to obtain an estimate of the pooled variance is to construct an ANOVA table including all sums of
squares, using the following formulas:

Where: p = number of effluent concentrations including the control:

N = the total sample size; N:zi:ni

"i"

n; = the number of replicates for concentration

SST=X Y,?-G*IN

— Total Sum of Squares
ij
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SSB=YXT?n,-G

2
IN Between Sum of Squares

SSW=SST-SSB Within Sum of Squares

P
G = the grand total of all sample observations; G =XT ;
i=1

T, = the total of the replicate measurements for concentration i

N = the total sample size; N:%:”i

n; = the number of replicates for concentration i
Y ; = the jth observation for concentration i
1.4 For the data in this example:
n=n=n;=n,=n ;=3

T, =Y, +Y,+Y,=2.624
T,= Y, + Yy + Y, =3.063
Ty=Yy + Yo + Y, = 2.812
T,=Y
T,=Y

Yot Y, =2.647
G+ Yo+ Y, =2.666

G=T,+T,+T,+T,+T,=13.812

SST=Y ng—GZ/N

i

=12.922 - (13.812)%/15
=0.204
=12.763 - (13.812)%/15

=0.045

SSW=SST-SSB

=0.204 - 0.045

402



=0.159

1.5 Summarize these data in the ANOVA table (Table C.2).

TABLE C.2. ANOVA TABLE FOR DUNNETT'S PROCEDURE

Source df Sum of Mean Square (MS)

Squares (SS) (SS/df)
Between p-1 SSB S; = SSB/(p-1)
Within N-p SSwW Sy = SSW/(N-p)
Total N-1 SST

1.6 Summarize data for ANOVA (Table C.3).

TABLE C.3. COMPLETED ANOVA TABLE FOR DUNNETT'S PROCEDURE

Source df SS Mean Square
Between 5 -1= 4 0.045 0.011
Within 15 - 5= 10 0.159 0.016
Total 14 0.204

1.7 To perform the individual comparisons, calculate the t statistic for each concentration and control combination,
as follows:

(Y,-7)

f=— 1 7
S, J(Un )+ (1n)

Where: Y, = mean for each concentration i.

403



Y, = mean for the control
S,, = square root of the within mean square
n, = number of replicates in the control.

n; = number of replicates for concentration i.
1.8 Table C.4 includes the calculated t values for each concentration and control combination.

TABLE C4. CALCULATED T VALUES

Effluent

Concentration i t;

(%)

6.25 2 -1.414
12.5 3 - 0.600
25.0 4 - 0.068
50.0 5 -0.136

1.9 Since the purpose of the test is only to detect a decrease in growth from the control, a one-sided test is
appropriate. The critical value for the one-sided comparison (2.47), with an overall alpha level of 0.05, 10 degrees
of freedom and four concentrations excluding the control is read from the table of Dunnett's "T" values (Table C.5;
this table assumes an equal number of replicates in all treatment concentrations and the control). Comparing each of
the calculated t values in Table C.4 with the critical value, no decreases in growth from the control were detected.

Thus the NOEC is 50.0%.

1.10 To quantify the sensitivity of the test, the minimum significant difference (MSD) may be calculated. The
formula is as follows:

MSD=d S,,[(1/n,) +(1/n)

Where: d = critical value for the Dunnett's Procedure
S,, = the square root of the within mean square

n = the number of replicates at each concentration, assuming an equal number of replicates at all
treatment concentrations

n, = number of replicates in the control
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For example:

MSD=2.47(0.126)[/(1/3) +(1/3)]=2.47(0.126)(;/2/3)

=2.47(0.126)(0.816)
=0.254
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1.11 For this set of data, the minimum difference between the control mean and a concentration mean that can be detected
as statistically significant is 0.254 mg. This represents a decrease in growth of 29% from the control.

1.11.1 If the data have not been transformed, the MSD (and the percent decrease from the control mean that it represents)
can be reported as is.

1.11.2 In the case where the data have been transformed, the MSD would be in transformed units. In this case carry out
the following conversion to determine the MSD in untransformed units.

1.11.2.1 Subtract the MSD from the transformed control mean. Call this difference D. Next, obtain untransformed
values for the control mean and the difference, D.

MSD, = control , - D

u

Where: MSD, = the minimum significant difference for untransformed data
Control, = the untransformed control mean
D, = the untransformed difference

1.11.2.2 Calculate the percent reduction from the control that MSD, represents as:

, MS
Percent Reduction = ———= x 100

Control

1.11.3 An example of a conversion of the MSD to untransformed units, when the arc sine square root transformation was
used on the data, follows.

Step 1. Subtract the MSD from the transformed control mean. As an example, assume the data in Table C.1
were transformed by the arc sine square root transformation. Thus:

0.875-0.254 =0.621

Step 2. Obtain untransformed values for the control mean (0.875) and the difference (0.621) obtained in Step 1,

above.
[ Sine (0.875)]* = 0.589
[ Sine (0.621)]* = 0.339

Step 3. The untransformed MSD (MSD,) is determined by subtracting the untransformed values obtained in Step
2.

MSD, = 0.589-0.339 = 0.250

In this case, the MSD would represent a 42% decrease in survival from the control [(0.250/0.589)(100)].
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2. COMPUTER CALCULATIONS

2.1 This computer program incorporates two analyses: an analysis of variance (ANOVA), and a multiple comparison of
treatment means with the control mean (Dunnett's Procedure). The ANOVA is used to obtain the error value. Dunnett's
Procedure indicates which toxicant concentration means (if any) are statistically different from the control mean at the 5%
level of significance. The program also provides the minimum difference between the control and treatment means that
could be detected as statistically significant, and tests the validity of the homogeneity of variance assumption by Bartlett's
Test. The multiple comparison is performed based on procedures described by Dunnett (1955).

2.2 The source code for the Dunnett's program is structured into a series of subroutines, controlled by a driver routine.
Each subroutine has a specific function in the Dunnett's Procedure, such as data input, transforming the data, testing for
equality of variances, computing p values, and calculating the one-way analysis of variance.

2.3 The program compares up to seven toxicant concentrations against the control, and can accommodate up to 50
replicates per concentration.

2.4 If the number of replicates at each toxicant concentration and control are not equal, a t test with the Bonferroni
adjustment is performed instead of Dunnett's Procedure (see Appendix D).

2.5 The program was written in IBM-PC FORTRAN by Computer Sciences Corporation, 26 W. Martin Luther King
Drive, Cincinnati, OH 45268. A compiled version of the program can be obtained from EMSL-Cincinnati by sending a
diskette with a written request.

2.6 DATA INPUT AND OUTPUT

2.6.1 Data on the number of surviving mysids, Mysidopsis bahia, from a survival, growth and fecundity test (Table C.6)
are used to illustrate the data input and output for this program.

2.6.2 Data Input
2.6.2.1 When the program is entered, the user is asked to select the type of data to be analyzed:

1. Response proportions, like survival or fertilization proportions data.
2. Counts and measurements, like offspring counts, cystocarp and algal cell counts, weights, chlorophyll
measurements or turbidity measurements.

2.6.2.2 After the type of analysis for the data is chosen, the user has the following options:

1. Create a data file

2. Edit a data file

3. Perform analysis on existing data set
4. Stop

2.6.2.3 When Option 1 (Create a data file) is selected for response proportions, the program prompts the user for the
following information:

1. Number of concentrations, including control
For each concentration and replicate:
- number of organisms exposed per replicate
- number of organisms responding per replicate (organisms surviving, eggs fertilized, etc.)

2.6.2.4 After the data have been entered, the user may save the file on a disk, and the program returns to the main menu
(see below).
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2.6.2.5 Sample data input is shown in Figure C.1.

2.6.3. Program Output

2.6.3.1 When Option 3 (perform analysis on existing data set) is selected from the menu, the user is asked to select the
transformation desired, and indicate whether they expect the means of the test groups to be less or greater than the mean
for the control group (see Figure C.2)

2.6.3.2 Summary statistics (Figure C.3) for the raw and transformed data, if applicable, the ANOVA table, results of

Bartlett's Test, the results of the multiple comparison procedure, and the minimum detectable difference are included in the
program output.
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TABLE C.6. SAMPLE DATA FOR DUNNETT'S PROGRAM FOR SURVIVING MYSIDS,

MYSIDOPSIS BAHIA

Treatment Replicate Total No.
Chamber Mysids Alive

1 Control 1 5 4
2 5 4
3 5 5
4 5 5
5 5 5
6 5 5
7 5 5
8 5 4

2 50 ppb 1 5 4
2 5 5
3 5 4
4 5 4
5 5 5
6 5 5
7 5 4
8 5 5

3 100 ppg 1 5 3
2 5 5
3 5 5
4 5 5
5 5 5
6 5 3
7 5 4
8 4 4

4 210 ppb 1 5 5
2 5 4
3 5 1
4 5 4
5 5 3
6 5 4
7 5 4
8 5 4

5 450 ppb 1 5 0
2 5 1
3 5 0
4 5 1
5 5 0
6 5 0
7 5 0
8 5 2
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EMSL Cincinnati Dunnett Software
Version 1.5

1) Create a data file

2) Edit a data file

3) Analyze an existing data set

4) Stop

Your choice ? 3

Number of concentrations, including control ? 5

Number of replicates for conc. 1 (the control) ? 8

replicate  number of organisms exposed number of organisms responding
(organisms surviving, eggs fertilized, etc.)

1 5 4
2 5 4
3 5 5
4 5 5
5 5 5
6 5 5
7 5 5
8 5 4

Number of replicates for conc. 2 ? 8

Do you wish to save the data on disk ? y

Disk file for output ? mysidsur.dat

Figure C.1. Sample Data Input for Dunnett's Program for Survival Data from Table C.6.
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EMSL Cincinnati: Dunnett Software
Version 1.5

1) Create a data file

2) Edit a data file

3) Analyze an existing data set
4) Stop

Your choice ? 3
File name ? mysidsur.dat

Available Transformations

1) no transform

2) square root

3) logl0

4) arcsine square root

Your choice ? 4

Dunnett's test as implemented in this program is a one-sided test. You must specify the direction the test is to be run;
that is, do you expect the means for the test concentrations to be less than or greater than the mean for the control
concentration.

Direction for Dunnetts test : L=less than, G=greater than ? 1

Summary Statistics for Raw Data

Conc. n Mean s.d. cv%
1 = control 8 9250 .1035 11.2
2 8 .9000 .1069 11.9
3 8 .8500 1773 20.9
4 8 7250 2375 32.8
5 8 .1000 1512 151.2

Mysid Survival Example with Data in Table C.6

Figure C.2. Example of Choosing Option 3 from the Main Menu of the Dunnett Program.

412



Mysid Survival Example with Data in Table C.6
Summary Statistics and ANOVA

Transformation = Arcsine Square Root

Conc. n Mean s.d. cv%
1 = control 8 1.2560 1232 9.8

2 8 1.2262 1273 10.4
3 8 1.1709 2042 17.4
4% 8 1.0288 2593 25.2
5% 8 3424 1752 51.2

*) the mean for this conc. is significantly less than
the control mean at alpha = 0.05 (1-sided) by Dunnett's test

Minimum detectable difference for Dunnett's test = -.208074
This corresponds to a difference of -.153507 in original units
This difference corresponds to -16.98 percent of control

Between concentrations
sum of squares = 4.632112 with 4 degrees of freedom.
Error mean square = .034208 with 35 degrees of freedom.

Bartlett's test p-value for equality of variances = .257

Do you wish to restart the program ?

Figure C.3. Example of Program Output for the Dunnett’s Program Using the Survival Data in Table C.6.
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APPENDIX D

T TEST WITH BONFERRONI'S ADJUSTMENT

1. The t test with Bonferroni's adjustment is used as an alternative to Dunnett's Procedure when the number of replicates
is not the same for all concentrations. This test sets an upper bound of alpha on the overall error rate, in contrast to
Dunnett's Procedure, for which the overall error rate is fixed at alpha. Thus, Dunnett's Procedure is a more powerful test.

2. The t test with Bonferroni's adjustment is based on the same assumptions of normality of distribution and homogeneity
of variance as Dunnett's Procedure (See Appendix B for testing these assumptions), and, like Dunnett's Procedure, uses a
pooled estimate of the variance, which is equal to the error value calculated in an analysis of variance.

3. An example of the use of the t test with Bonferroni's adjustment is provided below. The data used in the example are
the same as in Appendix C, except that the third replicate from the 50% effluent treatment is presumed to have been lost.
Thus, Dunnett's Procedure cannot be used. The weight data are presented in Table D.1.

TABLE D.1. SHEEPSHEAD MINNOW, CYPRINODON VARIEGATUS, LARVAL GROWTH DATA
(WEIGHT IN MG) USED FOR THE T TEST WITH BONFERRONI'S ADJUSTMENT

Effluent Replicate Test Vessel Total Mean
Conc (%)
i 1 2 3 (T) (Y)

Control 1 1.017 0.745 0.862 2.624 0.875
6.25 2 1.157 0914 0.992 3.063 1.021
12.5 3 0.998 0.793 1.021 2.812 0.937
25.0 4 0.873 0.935 0.839 2.647 0.882
50.0 5 0.715 0.907 (Lost) 1.622 0.811

3.1 One way to obtain an estimate of the pooled variance is to construct an ANOVA table including all sums of squares,
using the following formulas:

Where: p = number of effluent concentrations including the control

N=Xn,

N = the total sample size; S

n, = the number of replicates for concentration i

SST=X Y,?-G*IN

~ Total Sum of Squares
ij

414



SSB=XT?/n,~G*/N

1

Between Sum of Squares

SSW=SST-SSB Within Sum of Squares

P
Where: G = The grand total of all sample observations; G =T ;
i=1
T, = The total of the replicate measurements for concentration i
Y;; = The jth observation for concentration i

3.2 For the data in this example:

n, = n=n=n,=3

Z
Il

20

= Y, +Y,+Y,;=2.624
= Y, +Yy+Y, =3.063
Y, + Yy, + Y, =2.812
= Y, +Y,+Y,=2.647
= Yo+ Yo+ Y=1.622

[y

o

Rl B e e
I

Q
Il

T, +T,+T,+T,+T,=12.768
SSB=XT?/n,-G*/N

= 11.709 - (12.768)%/14

= 0.064

SST=XY,?-G*IN

i

11.832 - (12.768)%/14

0.188

SSW=SST-SSB

0.188 - 0.064

0.124
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3.3 Summarize these data in the ANOVA table (Table D.2).

TABLE D.2. ANOVA TABLE FOR BONFERRONI'S ADJUSTMENT

Source df Sum of Mean Square (MS)
Squares (SS) (SS/df)
Between p-1 SSB Sz = SSB/(p-1)
Within N-p SSW Sy = SSW/(N-p)
Total N-1 SST

3.4 Summarize these calculations in the ANOVA table (Table D.3):

TABLE D.3. COMPLETED ANOVA TABLE FOR THE T-TEST WITH BONFERRONI'S ADJUSTMENT

Source df SS Mean Square
Between 5-1=4 0.064 0.016
Within 14-5=9 0.124 0.014
Total 13 0.188

3.5 To perform the individual comparisons, calculate the t statistic for each concentration and control combination, as
follows:

(¥, -Y)
S /(L/n)+(1/n)

t.=

Where: Y, = mean for concentration i
Y, = mean for the control

S,, = square root of the within mean square

n, = number of replicates in the control.
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n; = number of replicates for concentration i.

3.6 Table D.4 includes the calculated t values for each concentration and control combination.

TABLE D.4. CALCULATED T VALUES

Effluent

Concentration i t,

(%)

6.25 2 - 1.511
12.5 3 -0.642
25.0 4 -0.072
50.0 5 0.592

3.7 Since the purpose of the test is only to detect a decrease in growth from the control, a one-sided test is appropriate.
The critical value for the one-sided comparison (2.686), with an overall alpha level of 0.05, nine degrees of freedom and
four concentrations excluding the control, was obtained from Table D.5. Comparing each of the calculated t values in
Table D.4 with the critical value, no decreases in growth from the control were detected. Thus the NOEC is 50.0%.

417



Y9L'C 0CL'C 0L9°C €19°¢ LYS'C 891°C 69¢°C 6¢€C'C 610°C 0Ll 8¢
ILLC LTL'T LL9C 029°¢C 13 eELY'C YLET evee ¢50°¢C YOL'1 LT
6LLC PeL'C ¥89°C Le9¢ 65S°C 6LY'C 6LEC 8VC'C 9¢0°¢ 90L1 9¢
88L°C evL'C ¢69°C ¥€9°C 99¢°¢C 981°¢C $8¢C £eCC 090°¢ 60L°1 194
L6L'C SLT 10L°¢C 9'C YLS'C tov'c [16€°¢C 86CTC ¥90°C 1.1 14
808°C 9L'C 01LC 169°¢C €86°¢ 005°¢C 86£°C Y9C'C 690°C VIL'T 154
618°C ELLT 12LC 199°C ¢65°C 605°C 901°¢C [LTT YLOC 8IL'1 (44
(4304 G8LC ceL’e ¢L9C c09°¢ 8ISC viv'¢ 8LTT 080°C 1Ll IC
918°C 86L°C SYL'C ¥89°C €19°¢ 8CSC Yer'e 90C°¢C 980°C SCL'1 0¢
198°C €I8'¢ 6SLC L69°C 979°¢C 0vsC vey'c S6CC ¥60°C 0€L'1 61
6L8°C 0€8°C SLLT [4VA4 0¥9°¢ €66C ovy'C c0¢eC 101°¢ SEL'T 81
668°C 6v8°C €6LC 6CLC §e9°C L9S°C 6St'C 91¢¢ 011°¢ OvL'l L1
126C [L8C v18°C 6vL'C vL9'C ¥8$°C ELY'C 6CEC 0cI'C 9Ll 91
Lv6'C S68°C LE®'C ILLT ¥69°C €09°¢ 06v'C evee celre 127! Sl
LL6'C ve6'C ¥98°C L6L'C 8ILT ¢a9'C 015°¢ 09¢°C Sy1'¢ L1 14!
¢1o'e 056'C L68°C LT8C OvLC 169°C €ece 08¢°C 191°¢ ILL'T ¢l
YIRS 866°C §E6'C £€98°¢ 0€L'C 189°C 196°¢C YOv'C 6L1°C €8L1 4!
901°¢ Lv0'€ 186°C L06°C 1Z8°¢C 61LC ¥65°C (4344 10€°¢C 96L°1 11
OLT°€ 801°¢ 6€0°¢ 196°C IL8C YoL'C y€9°C 901°¢C 6CCC €I8'l 0T
0sTe G8I°¢ e 6C0°¢ Y6’ (4444 989°C 01s°¢ €9C'C yeg'l 6
96¢¢ G8C¢ 90T ¢ 8IT°¢ 910°¢ L68°C SLT L9S°C L0EC 098°1 8
005°¢ e 9¢Le 6¢C’¢ 8CI'E 866°C r8'C w9'C §9¢¢ G681 L
80L°¢ 619°¢ ccse (4823 88C°¢ evle 696'C 0SLC Lyy'c 6’1 9
eeoy LT6'¢ [18°¢ 189°¢ gece g9¢e¢ Yo1°¢ (44 ILSC 910°¢ S
S09¥y 99 ¥ SIEY 81y 196'¢ LyL'€ 96v'¢ L31°¢ LLL'T cel'e 4
Iv8°S 979°¢ ¢6¢L°S 8EIl'S LS8V Ivsv LLT'Y IvL'e e81°¢ 12354 €
§C6'6 801°6 198°8 LLT8 6v9°L $96'9 90C9 ores €0ey 0c6'C [4
LS9€9 06C°LS ¥26°0S 9¢S vy 681°8¢ 128°1¢ SY'Se 0061 LOLC1 y1€9 I
01=2A 6=21 8= L= 9= | =2 =2 =2 =3 JP
AdTIVL ANO “THAAT TVILLIIO S00=d
INHINLSALAV SINOTIHANOYG HLIM LSHL L HHL ¥O4 L. 404 SHNTVA TVOILLIYD Saygigve

418



‘[0nu0d 3y} 03 paredwod 2q 0} SUOTJRIFUIIUOD JO JOQUINN = I
"VAONY woyj (Jo1urg arenbg uedpy) SN 10J WOPAIJ JO $9139( = J'P

9L6C 0vs'¢ 861°C 0S¢ Y6£°C LTee (444 6C1'C 0961 Yo'l SyuLyuy
819°¢ 08S°C 9¢¢°C L8Y'C 6C'C 86¢°C 0LTC 13 4 0861 8691 0l
ca9'C £86°C ()44 06¥'C (4344 19¢€°¢C €LTC 9¢1°¢C 86°1 6591 011
979°C 885°C 124°X¢ 1444 Sev'e §9¢'¢ 9LTC 8S1°C ¥86'1 199°1 001
[43°4 £€65°C 6vS'C 661°C ovy'c 69¢C 08¢C’C ao1C L861 2991 06
6£9°C 009°C 96¢°¢ c0sC oy VLET ¢8TC 991°¢C 166°1 S99°1 08
8¥9°C 609°C y9¢°C 13 B3¢ 134 ¢ 18¢°C 16C°C ILTC S66°1 L9991 0L
199°C 129°C 9LSC 1454 131 ¢ 16€¢C 00€¢C 6L1°C 100°C 1L9°1 09
8L9°C 8€9°C ¢68°C 6£6°C 8LY'C Yov'¢C 11¢7¢ 681°C 600°C 9L9°1 0¢
S0LC £99°C 919C 96°C 661°C Yer'e 6CeC c0TC (4414 ¥89°1 (V1%
80L°C L99°C 619°C ¢9¢°¢ 08T 9TY'C cee’e L0TC £C0°¢ G891 6¢
CIL'T 0L9°C £€C9°¢ 89¢°C c0s°¢ (Yard yeee 60C°C ¢e0’¢ 9891 8¢
91LC VL9 979°C LT 806°C (4344 LEET 11¢¢ L20C 8891 LE
0CLC 8L9C 0¢€9°¢ CLST (4594 SEV'e 0vee eIee 620°C 6891 9¢
YTL'C 89°C y€9°C 6L5°C SIs¢ 8ev'C (4494 91C¢C 1€0°C 0691 G¢
6CL'C 989°C 8¢€9°C £86°¢ 615°¢C (4444 9eC 61C¢C £e0°¢ 169°1 143
YeL'C 169°C ev9'C L8ST £€Cse e 6veC 1cCe ce0C €69°1 €¢
6€L°C 969°C Ly9'C ¢68°C LTST 6V’ (4324 yeee LEOT ¥69°1 [43
SYL'C 10L°C 59T L6S°C 1€6°¢C 134 A 96¢C 8CC'C 0t0°C 969°1 1€
0SL°C LOLC 869°C c09°¢C 9¢6°C 8SY'C 09¢¢C 1€C°¢ &v0'¢ 8691 0¢
LSL'T €ILT ¥99°C L09°C 14K €91'C y9¢€°C ceTe 90°C 00L'1 6¢C
0r=3 6=21 8= L= 9= =3 =2 €= =2 =2 JP
(@ANNILNOD) A4 TIVL ANO “TAAAT TVOLLIYD S0°0 =d
INANLSALAV SINOTIAINOY HLIM LSAL L HHL 404 WLy 404 SHNTVA TVOLLIEID cagigvy

419



APPENDIX E
STEEL'S MANY-ONE RANK TEST

1. Steel's Many-one Rank Test is a nonparametric test for comparing treatments with a control. This test is an alternative
to Dunnett's Procedure, and may be applied to data when the normality assumption has not been met. Steel's Test requires
equal variances across the treatments and the control, but it is thought to be fairly insensitive to deviations from this
condition (Steel, 1959). The tables for Steel's Test require an equal number of replicates at each concentration. If this is
not the case, use Wilcoxon's Rank Sum Test, with Bonferroni's adjustment (See Appendix F).

2. For an analysis using Steel's Test, for each control and concentration combination, combine the data and arrange the
observations in order of size from smallest to largest. Assign the ranks to the ordered observations (1 to the smallest, 2 to
the next smallest, etc.). If ties occur in the ranking, assign the average rank to the observation. (Extensive ties would
invalidate this procedure). The sum of the ranks within each concentration and within the control is then calculated. To
determine if the response in a concentration is significantly different from the response in the control, the minimum rank
sum for each concentration and control combination is compared to the significant values of rank sums given later in the
section. In this table, k equals the number of treatments excluding the control and n equals the number of replicates for
each concentration and the control.

3. An example of the use of this test is provided below. The test employs survival data from a mysid 7-day, chronic test.
The data are listed in Table E.1. Throughout the test, the control data are taken from the site water control. Since there is
0% survival for all eight replicates for the 50% concentration, it is not included in this analysis and is considered a
qualitative mortality effect.

4. For each control and concentration combination, combine the data and arrange the observations in order of size from
smallest to largest. Assign the ranks (1, 2, 3, ..., 16) to the ordered observations (1 to the smallest, 2 to the next smallest,
etc.). Ifties occur in the ranking, assign the average rank to each tied observation.

5. An example of assigning ranks to the combined data for the control and 3.12% effluent concentration is given in Table
E.2. This ranking procedure is repeated for each control and concentration combination. The complete set of rankings is
listed in Table E.3. The ranks are then summed for each effluent concentration, as shown in Table E 4.

6. For this set of data, determine if the survival in any of the effluent concentrations is significantly lower than the
survival of the control organisms. If this occurs, the rank sum at that concentration would be significantly lower than the
rank sum of the control. Thus, compare the rank sums for the survival at each of the various effluent concentrations with
some "minimum" or critical rank sum, at or below which the survival would be considered to be significantly lower than
the control. At a probability level of 0.05, the critical rank sum in a test with four concentrations and eight replicates per
concentration, is 47 (see Table E.5).

7. Of the rank sums in Table E.4, none are less than 47. Therefore, due to the qualitative effect at the 50% effluent
concentration, the NOEC is 25% effluent and the LOEC is 50% effluent.
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TABLEE.I. EXAMPLE OF STEEL'S MANY-ONE RANK TEST: DATA FOR MYSID, MYSIDOPSIS
BAHIA, 7-DAY CHRONIC TEST

Effluent Replicate Number of Number of
Concentration Chamber Mysids at Live Mysids
Start of Test at End of Test

Control
(Site Water)

0NN AW =
WK b b
[ S Y LA BE S N

Control
(Brine &
Dilution Water)

0NN bW~
L b b i
W Wk B WWWLW

3.12%

6.25%

12.5%

25.0%

50.0%

PO UNBEWRWNDNFR,OIAUNE WD, OIANANNDE WP, OIAANEAE WD, AR WD~
A\ RV, BV, RV, RV, BV, BV, BV, BV, RO, RV, BV, BV, BV, BV, BV, SRV, BV, RV, BV, BV, BN, BV, BV, B, RV, BV, BV, RV, R, BV, BV, B, BV, B, BV, BV, B, RV, BV,
OO OO0 R, UuLULLULLLLULLLERRULMLUDMDUULLLLEADRAEDORARWLWLWOURE ROV
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TABLE E.2. EXAMPLE OF STEEL'S MANY-ONE RANK TEST: ASSIGNING
RANKS TO THE CONTROL AND 3.12% EFFLUENT CONCENTRATIONS

Rank Number of Live Control or % Effluent
Mysids, Mysidopsis bahia

1 3 3.12
6.5 4 Control
6.5 4 Control
6.5 4 Control
6.5 4 Control
6.5 4 Control
6.5 4 3.12
6.5 4 3.12
6.5 4 3.12
6.5 4 3.12
6.5 4 3.12
14 5 Control
14 5 Control
14 5 Control
14 5 3.12
14 5 3.12
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TABLE E.3. TABLE OF RANKS

Replicate Effluent Concentration (%)
Chamber Control' 3.12 6.25 12.5 25.0

1 4 (6.5,6,6.5,5) 4 (6.5) 3 (1) 5(13.5) 5(12.5)
2 4 (6.5,6,6.5,5) 4 (6.5) 4 (6) 4 (6.5) 5(12.5)
3 5(14,13.5,13.5,12.5) 4 (6.5) 5(13.5)  5(13.9) 5(12.5)
4 4 (6.5,6,6.5,5) 5(14) 4 (6) 3(1.5) 5(12.5)
5 5(14,13.5,13.5,12.5) 4 (6.5) 4 (6) 5(13.5) 3(1)

6 4 (6.5,6,6.5,5) 4 (6.5) 4 (6) 4 (6.5) 512.5)
7 4 (6.5,6,6.5,5) 5(14) 5(13.5)  4(6.5) 4(5)

8 5(14,13.5,13.5,12.5) 3 (D) 5(13.5)  3(1.5) 4(5)

' Control ranks are given in the order of the concentration with which they were ranked.

TABLE E.4. RANK SUMS

Effluent Rank Sum
Concentration

(%)

3.12 61.5
6.25 65.5
12.50 63.0
25.00 73.5
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TABLE E.5. SIGNIFICANT VALUES OF RANK SUMS: JOINT CONFIDENCE COEFFICIENTS OF 0.95
(UPPER) and 0.99 (LOWER) FOR ONE-SIDED ALTERNATIVES (Steel, 1959)

k = number of treatments (excluding control)

n 2 3 4 5 6 7 8 9
4 11 10 10 10 10 - - --
5 18 17 17 16 16 16 16 15
15 - - - - - - -

6 27 26 25 25 24 24 24 23
23 22 21 21 - - - -

7 37 36 35 35 34 34 33 33
32 31 30 30 29 29 29 29

8 49 48 47 46 46 45 45 44
43 42 41 40 40 40 39 39

9 63 62 61 60 59 59 58 58
56 55 54 53 52 52 51 51

10 79 77 76 75 74 74 73 72
71 69 68 67 66 66 65 65

11 97 95 93 92 91 90 90 89
87 85 84 83 82 81 81 80

12 116 114 112 111 110 109 108 108
105 103 102 100 99 99 98 98

13 138 135 133 132 130 129 129 128
125 123 121 120 119 118 117 117

14 161 158 155 154 153 152 151 150
147 144 142 141 140 139 138 137

15 186 182 180 178 177 176 175 174
170 167 165 164 162 161 160 160

16 213 209 206 204 203 201 200 199
196 192 190 188 187 186 185 184

17 241 237 234 232 231 229 228 227
223 219 217 215 213 212 211 210

18 272 267 264 262 260 259 257 256
252 248 245 243 241 240 239 238

19 304 299 296 294 292 290 288 287
282 278 275 273 272 270 268 267

20 339 333 330 327 325 323 322 320
315 310 307 305 303 301 300 299
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APPENDIX F

WILCOXON RANK SUM TEST

1. Wilcoxon's Rank Sum Test is a nonparametric test, to be used as an alternative to Steel's Many-one Rank Test when
the number of replicates are not the same at each concentration. A Bonferroni's adjustment of the pairwise error rate for
comparison of each concentration versus the control is used to set an upper bound of alpha on the overall error rate, in
contrast to Steel's Many-one Rank Test, for which the overall error rate is fixed at alpha. Thus, Steel's Test is a more
powerful test.

2. The use of this test may be illustrated with fecundity data from the mysid test in Table F.1. The site water control and
the 12.5% effluent concentration each have seven replicates for the proportion of females bearing eggs, while there are
eight replicates for each of the remaining three concentrations.

3. For each concentration and control combination, combine the data and arrange the values in order of size, from
smallest to largest. Assign ranks to the ordered observations (a rank of 1 to the smallest, 2 to the next smallest, etc.). If
ties in rank occur, assign the average rank to each tied observation.

4. An example of assigning ranks to the combined data for the control and effluent concentration 3.12% is given in Table
F.2. This ranking procedure is repeated for each of the three remaining control versus test concentration combinations.
The complete set of ranks is listed in Table F.3. The ranks are then summed for each effluent concentration, as shown in
Table F.4.

5. For this set of data, determine if the fecundity in any of the test concentrations is significantly lower than the fecundity
in the control. If this occurs, the rank sum at that concentration would be significantly lower than the rank sum. Thus,
compare the rank sums for fecundity of each of the various effluent concentrations with some "minimum" or critical rank
sum, at or below which the fecundity would be considered to be significantly lower than the control. At a probability level
of 0.05, the critical rank in a test with four concentrations and seven replicates in the control is 44 for those concentrations
with eight replicates, and 34 for those concentrations with seven replicates (see Table F.5, for K = 4).

6. Comparing the rank sums in Table F.4 to the appropriate critical rank, only the 25% effluent concentration does not
exceed its critical value of 44. Thus, the NOEC and LOEC for fecundity are 12.5% and 25%, respectively.
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TABLEF.1. EXAMPLE OF WILCOXON'S RANK SUM TEST: FECUNDITY DATA FOR MYSID,
MYSIDOPSIS BAHIA, 7-DAY CHRONIC TEST

Effluent Replicate Number of Number of Proportion
Concentration Chamber Mysids at Live Mysids of Females
Start of Test at End of Test with Eggs

Control
(Site Water)

0.50
0.75
0.67
0.67
0.50
1.00
1.00
Control 1.00
(Brine &

Dilution Water)

3.12%

6.25%

12.5%

25.0%

50.0%
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TABLE F.2. EXAMPLE OF WILCOXON'S RANK SUM TEST: ASSIGNING RANKS TO THE CONTROL
AND 3.12% EFFLUENT CONCENTRATIONS

Rank Proportion of Site Water Control
Females W/Eggs or Effluent %
1 0.00 3.12
3.5 0.50 Control
3.5 0.50 Control
3.5 0.50 3.12
3.5 0.50 3.12
7 0.67 Control
7 0.67 Control
7 0.67 3.12
9 0.75 Control
12.5 1.00 Control
12.5 1.00 Control
12.5 1.00 3.12
12.5 1.00 3.12
12.5 1.00 3.12
12.5 1.00 3.12
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TABLE F.3. TABLE OF RANKS'

Rep Proportion Site Water Effluent Concentration (%)
Control Rank 3.12 6.25 12.5 25.0
1 0.50 (3.5,3,5.5,7.5) 1.00 (12.5) 0.50 (3) 0.33 (2.5) 0.00 (2)
2 ---- 0.50 (3.5) 0.00 (1) 0.50 (5.5) 0.50 (7.5)
3 0.75 (9,9.5,10,13) 0.67 (7) 0.75 (9.5) 1.00 (12.5) 0.33(4)
4 0.67 (7,6.5,8.5,11.5) 1.00 (12.5) 1.00(13) -- 0.00 (2)
5 0.67 (7,6.5,8.5,11.5) 0.50 (3.5) 1.00 (13) 1.00 (12.5) 0.50 (7.5)
6 0.50 (3.5,3,5.5,7.5) 1.00 (12.5) 1.00 (13) 0.00 (1) 0.00 (2)
7 1.00 (12.5,13,12.5,14.5) 1.00(12.5) 0.67 (6.5) 0.33(2.5) 0.50 (7.5)
8 1.00 (12.5,13,12.5,12.5) 0.00 (1) 0.67 (6.5) 0.50 (5.5) 0.50 (7.5)
'Control ranks are given in the order of the concentration with which they were ranked.
TABLE F.4. RANK SUMS
Effluent Rank Sum No. of Critical
Concentration Replicates Rank Sum
(%)
3.12 65 8 44
6.25 65.5 8 44
12.50 42 7 34
25.00 40 8 44
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TABLEF.5. CRITICAL VALUES FOR WILCOXON'S RANK SUM TEST WITH
BONFERRONI'S ADJUSTMENT OF ERROR RATE FOR COMPARISON
OF "K" TREATMENTS VERSUS A CONTROL FIVE PERCENT

CRITICAL LEVEL (ONE-SIDED ALTERNATIVE: TREATMENT

CONTROL)
K No. Replicates No. of Replicates Per Effluent Concentration
in Control

3 4 5 6 7 8 9 10
1 3 6 10 16 23 30 39 49 59
4 6 11 17 24 32 41 51 62
5 7 12 19 26 34 44 54 66
6 8 13 20 28 36 46 57 69
7 8 14 21 29 39 49 60 72
8 9 15 23 31 41 51 63 72
9 10 16 24 33 43 54 66 79
10 10 17 26 35 45 56 69 82
2 3 -- - 15 22 29 38 47 S8
4 -- 10 16 23 31 40 49 60
5 6 11 17 24 33 42 52 63
6 7 12 18 26 34 44 55 66
7 7 13 20 27 36 46 57 69
8 8 14 21 29 38 49 60 72
9 8 14 22 31 40 51 62 75
10 9 15 23 32 42 53 65 78
3 3 -- - -- 21 29 37 46 57
4 -- 10 16 22 30 39 48 59
5 -- 11 17 24 32 41 51 62
6 6 11 18 25 33 43 53 65
7 7 12 19 26 35 45 56 68
8 7 13 20 28 37 47 58 70
9 7 13 21 29 39 49 61 73
10 8 14 22 31 41 51 63 76
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TABLE F.5. CRITICAL VALUES FOR WILCOXON'S RANK SUM TEST WITH BONFERRONI'S
ADJUSTMENT OF ERROR RATE FOR COMPARISON OF "K" TREATMENTS VERSUS A
CONTROL FIVE PERCENT CRITICAL LEVEL (ONE-SIDED ALTERNATIVE: TREATMENT

CONTROL) (CONTINUED)
K No. Replicates No. of Replicates Per Effluent Concentration
in Control

3 4 5 6 7 8 9 10
4 3 -- -- -- 21 28 37 46 56
4 -- -- 15 22 30 38 48 59
5 -- 10 16 23 31 40 50 61
6 6 11 17 24 33 42 52 64
7 6 12 18 26 34 44 55 67
8 7 12 19 27 36 46 57 69
9 7 13 20 28 38 48 60 72
10 7 14 21 30 40 50 62 75
5 3 -- -- -- -- 28 36 46 56
4 -- -- 15 22 29 38 48 58
5 -- 10 16 23 31 40 50 61
6 -- 11 17 24 32 42 52 63
7 6 11 18 25 34 43 54 66
8 6 12 19 27 35 45 56 68
9 7 13 20 28 37 47 59 71
10 7 13 21 29 39 49 61 74
6 3 -- -- -- -- 28 36 45 56
4 -- -- 15 21 29 38 47 58
5 -- 10 16 22 30 39 49 60
6 -- 11 16 24 32 41 51 63
7 6 11 17 25 33 43 54 65
8 6 12 18 26 35 45 56 68
9 6 12 19 27 37 47 58 70
10 7 13 20 29 38 49 60 73
7 3 -- -- -- -- -- 36 45 56
4 -- -- -- 21 29 37 47 58
5 -- -- 15 22 30 39 49 60
6 -- 10 16 23 32 41 51 62
7 -- 11 17 25 33 43 53 65
8 6 11 18 26 35 44 55 67
9 6 12 19 27 36 46 58 70
10 7 13 20 28 38 48 60 72
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TABLE F.5.

CRITICAL VALUES FOR WILCOXON'S RANK SUM TEST WITH

BONFERRONTI'S ADJUSTMENT OF ERROR RATE FOR COMPARISON OF
"K" TREATMENTS VERSUS A CONTROL FIVE PERCENT CRITICAL

LEVEL (ONE-SIDED ALTERNATIVE: TREATMENT CONTROL)

(CONTINUED)
K No. Replicates No. of Replicate Per Effluent Concentration
in Control
3 4 5 6 7 8 9 10
8 3 -- -- -- -- -- 36 45 55
4 -- -- -- 21 29 37 47 57
5 -- -- 15 22 30 39 49 59
6 -- 10 16 23 31 40 51 62
7 -- 11 17 24 33 42 53 64
8 6 11 18 25 34 44 55 67
9 6 12 19 27 36 46 57 69
10 6 12 19 28 37 48 59 72
9 3 -- -- -- -- -- - 45 55
4 -- -- -- 21 28 37 46 57
5 -- -- 15 22 30 39 48 59
6 -- 10 16 23 31 40 50 62
7 -- 10 17 24 33 42 52 64
8 -- 11 18 25 34 44 55 66
9 6 11 18 26 35 46 57 69
10 6 12 19 28 37 47 59 71
10 3 -- -- -- -- -- -- 45 55
4 -- -- -- 21 28 37 46 57
5 -- -- 15 22 29 38 48 59
6 -- 10 16 23 31 40 50 61
7 -- 10 16 24 32 42 52 64
8 -- 11 17 25 34 43 54 66
9 6 11 18 26 35 45 56 68
10 6 12 19 27 37 47 58 71
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